深度强化学习系列笔记:深度神经网络
2017-03-05
2016年以来,随着AlphaGo的声名鹊起。深度学习和强化学习在学术界和工业界掀起了波澜大风,在人们探索通用人工智能的路上,他们就像黑白双煞,一个负责特征理解,一个负责找训练粮食。从去年12月起,我们团队也投入大量精力研究和学习DRL领域的技术和算法,并尝试用在电商推荐和智能投放领域。经过3个月的学习,基本建立起深度学习和强化学习的框架,我计划用2篇文章来梳理一下学习到的内容,并尝试做一些扩展。
这是第一篇文章,主要梳理深度学习的算法理论框架。
以下是根据台湾大学李宏毅教授的讲稿《Deep Learning Tutorial》整理的提纲:
Introduction
- Steps for Deep Learning
- define a set of function [Neural Network]
- goodness of function [Loss]
- pick the best function [Back propagation]
Training DNN
- Good on Training Data
- Choosing proper loss
- Square Error
- Cross Entropy
- Mini-batch
- Faster
- Avoid Overfitting
- New activation function
- Vanishing Gradient Problem
- Rectified Linear Unit(ReLU)
- Maxout[Ian J. Goodfellow, ICML’13]
- Adaptive Learning Rate
- Momentum[Adam]
- Choosing proper loss
- Good on Test Data
- Early Stopping
- Regularization
- Dropout(is a kind of ensenble)[Ian J. Goodfellow, ICML’13]
- Network Structure
Variants of Neural Networks
- Convolutional Neural Network(CNN)
- Why CNN for image
- patterns are much smaller than the whole image [Convolution]
- same patterns appear in different regions [Convolution]
- subsampling the pixels will not change the object [Max Pooling]
- Process: Convolution & Max Pooling & Fully Connect
- Why CNN for image
- Recurrent Neural Network(RNN)
- The output of hidden layer are stored in the memory
- Long Short-Term Memory(LSTM) [4 inputs,1 outputs]
- Input Gate
- Signal control the input gate
- Forget Gate
- Signal control the output gate